BBA 71835

THE Ca²⁺ PERMEABILITY OF SARCOPLASMIC RETICULUM VESICLES

II. Ca²⁺ EFFLUX IN THE ENERGIZED STATE OF THE CALCIUM PUMP

ULRIK GERDES and JESPER V. MØLLER

Institute of Medical Biochemistry, Aarhus University, 8000 Aarhus C (Denmark)

(Received May 9th, 1983)

Key words: Ca2+ transport; Ca2+-ATPase; Sarcoplasmic reticulum vesicle; (Rabbit skeletal muscle)

 Ca^{2+} efflux from sarcoplasmic reticulum vesicles was studied by measurements of net Ca^{2+} uptake, $^{45}Ca^{2+}$ flux and hydrolysis of energy-rich phosphate. The maximal Ca^{2+} uptake capacity (150–200 nmol/mg protein at pH 6.7, 10 mM $MgCl_2$ and $\mu=0.26$) was independent of the nature and concentration of the energy-donating substrate (ATP or carbamyl phosphate) and of temperature (15–35°C), suggesting coupling between influx and efflux of Ca^{2+} . In the presence of high concentrations of ATP, this efflux of Ca^{2+} was much higher than the passive Ca^{2+} permeation, measured after ATP or Ca^{2+} depletion of the reaction medium. Ca^{2+} efflux was imperceptible at vesicle filling levels below 35–40 nmol Ca^{2+} /mg protein, and uncorrelated to the inhibition of the Ca^{2+} -ATPase by high intravesicular Ca^{2+} concentrations. Analysis of the data indicated that Ca^{2+} efflux under our conditions probably is associated with one of the Ca^{2+} -ATPase partial reactions, occurring after dephosphorylation, rather than with a reversal of the Ca^{2+} translocation step in the phosphorylated state of the enzyme. Furthermore, passive Ca^{2+} permeation may be concurrently reduced during the enzymatically active state. It is proposed that both Ca^{2+} efflux and passive Ca^{2+} permeation (Ca^{2+} outflow) proceed via the same channels which are closed (occluded) during part of the Ca^{2+} -ATPase reaction cycle.

Introduction

Tight vesicles of membrane fragments of sarcoplasmic reticulum, isolated from skeletal muscle, are able to accumulate Ca²⁺ at the expense of the chemical energy contained in ATP or other energy-rich phosphate compounds. When ATP is added to a suspension of sarcoplasmic reticulum vesicles in a medium without Ca²⁺-precipitating anions and in the presence of a surplus of Ca²⁺, the vesicles accumulate Ca²⁺ to a certain maximal filling level, representing balance between the energy-consuming Ca²⁺ translocation (Ca²⁺ influx) and Ca²⁺ efflux. Interesting observations are that identical maximal Ca²⁺-filling levels are obtained in the vesicle suspensions, despite a wide variation

in the turnover rate of the ATPase [1-3]. This is not to be expected if Ca²⁺ accumulation is governed by a 'pump and leak' system, but instead suggests a tight coupling between Ca²⁺ influx and efflux at high intravesicular levels of Ca²⁺. Recent studies have suggested that the efflux of Ca²⁺ represents reversal of the active transport step, but without resynthesis of ATP [4,5].

In the present paper Ca²⁺ efflux was studied during active Ca²⁺ influx by a combination of net Ca²⁺ uptake, ⁴⁵Ca²⁺ flux and ATPase activity measurements under conditions where reversal of Ca²⁺ transport, with resynthesis of ATP, is negligible. We find that Ca²⁺ efflux at a high turnover of the pump and at high Ca²⁺ load levels is much faster than can be accounted for by passive per-

meation. We obtain evidence that under our conditions Ca²⁺ efflux is associated with one of the latest steps in the enzymatic cycle, rather than with an exchange in the Ca²⁺-transport step in the phosphorylated state. In addition, a detailed analysis suggests that ATPase activity-dependent efflux and passive permeation of Ca²⁺ are interdependent phenomena.

Materials and Methods

Preparation of sarcoplasmic reticulum vesicles and spectrophotometric measurements of net Ca²⁺ uptake and release were performed as described in the previous paper [6]. The buffer used in all experiments comprised 50 mM Tris-maleate/100 mM KCl/10 mM MgCl₂. In addition to a magnetic stirrer, improved mixing of the spectrophotometer cuvette contents was obtained by the use of a motor-driven plastic propeller situated in the upper part of the cuvette. Ca²⁺ uptake was initiated by addition of ATP from a microsyringe mounted in a spring-activated injection device. The time for complete mixing was 300 ms, when 10 μ l reagent was shot into a cuvette containing 2500 μ l reaction medium.

Ca²⁺-influx measurements

Measurement of Ca²⁺ influx was made when maximal filling of the sarcoplasmic reticulum vesicles had been obtained with ⁴⁰Ca²⁺ in the presence of ATP or carbamyl phosphate in some experiments. A small volume of ⁴⁵CaCl₂ (Amersham International: spec. act. 400–1600 Ci/mol) was added at the appropriate time. The spectrophotometer cuvette with its magnetic stirrer was used as mixing chamber and 250–500-μl samples were taken for Millipore filtration and analyzed as previously described [6]. Influx of Ca²⁺ was calculated either from the initial slope of ⁴⁵Ca²⁺ disappearance from the medium as a function of time, or by logarithmic transformation, assuming a two-compartment model in steady state [7]:

$$\ln\left(\frac{^{45}Ca_{\text{o}}}{^{45}Ca_{\text{o},\infty}}-1\right) = -V\left(\frac{1}{Ca_{\text{i},\infty}} + \frac{1}{Ca_{\text{o},\infty}}\right) + \ln\frac{Ca_{\text{i},\infty}}{Ca_{\text{o},\infty}}$$
(1)

in which V is Ca^{2+} influx (nmol/ml), $^{45}Ca_0$ is the

radioactive concentration remaining in the medium at time t after addition of $^{45}Ca^{2+}$ (cpm/ml) and $Ca_{i,\infty}$ and $Ca_{o,\infty}$ are the equilibrium concentrations of $^{40}Ca^{2+}$ inside and outside the vesicles (nmol/ml).

ATPase activity

ATPase activity was measured by following the liberation of inorganic phosphate, either chemically [6] or as ³²P_i from [y-³²P]ATP (Amersham International). In the latter type of experiment, where a high time-resolution was aimed at, a manually operated mixing apparatus with two syringes and a motor-driven Teflon stirrer was used. The reaction was initiated by the addition of ATP and quenched by addition of 250 µl 36% (w/v) trichloroacetic acid, containing 0.5 mM inorganic phosphate as carrier, to 1 ml reaction medium. Remaining [32P]ATP was partly removed from the mixture by addition of 1 ml 2% (w/v) acid-treated charcoal, followed by Millipore filtration [8]. Extraction of ³²P_i was done by an isobutanol-silicon tungstate procedure [9] and the radioactive content of the extract was counted by liquid scintillation.

Other methods and materials

Determination of the concentration of protein, ATP and of the total Ca²⁺ content in the sarcoplasmic reticulum vesicles (endogenous Ca²⁺) was performed as described in the previous paper [6]. The Ca²⁺ ionophore X537A (Lasalocid®) was a gift from Hoffman La Roche (Hvidovre, Denmark) and was used from stock solutions (3–4 mM), prepared in dimethylsulfoxide.

Results

Dependence of Ca²⁺ accumulation on Ca²⁺-ATPase activity and temperature

Fig. 1 shows the time-course of Ca^{2+} uptake by sarcoplasmic reticulum vesicles in the presence of different ATP concentrations. It is seen that, despite widely different initial Ca^{2+} uptake rates, the vesicles ultimately reach the same level of Ca^{2+} content. The constancy of the maximal Ca^{2+} load under the given conditions (pH 6.7, 10 mM MgCl₂ and μ -0.26) was demonstrated in different series of experiments, including changes in ATP concentration from 1 μ M to 1 mM (not shown) and the use

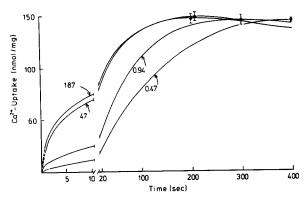


Fig. 1. Net Ca^{2+} uptake by sarcoplasmic reticulum vesicles in the the presence of different concentrations of ATP (figures on curves, μ M). Curves are averages of 4–18 experiments and maximal Ca^{2+} -filling levels are indicated by symbol (\spadesuit)±S.D. Assay conditions: 20°C; 0.51 mg/ml protein; 0.2 mg/ml pyruvate kinase; 2 mM phosphoenol pyruvate; ATP as indicated; 113 μ M $CaCl_2$ added; 20 μ M arsenazo III in all experiments.

of carbamyl phosphate as an energy-donor. In the latter case, the maximal Ca2+ load at 930 µM carbamyl phosphate was 160 ± 16 nmol/mg, as compared to 171 ± 17 nmol/mg with 36 μ M ATP (a different preparation from that in Fig. 1 was used, which accounts for the somewhat higher accumulation capacity in these experiments). In comparison, the Ca2+ influx rate, as measured with 45 Ca2+ during maximal uptake, was 0.85 with carbamyl phosphate as energy-donor and 3.5 nmol/mg per s with ATP. Also, a variation in carbamyl phosphate concentration from 200 to 2000 uM left the maximal Ca²⁺-filling level unchanged. The constancy of the maximal Ca2+ load suggests that Ca2+ efflux balancing Ca2+ influx is dependent on the activity of the ATPase, or, in other words, coupled to active, inward transport of Ca^{2+} .

Variation in temperature did not significantly change the maximal Ca^{2+} load either (15°C: 189 \pm 12; 20°C: 211 \pm 9; 25°C: 209 \pm 4; 30°C: 199 \pm 15; and 35°C: 201 \pm 1 nmol/mg; 100 μ M ATP and 1 mM phosphoenol pyruvate: a preparation with an even higher Ca^{2+} accumulation was used). Under the same conditions, the Ca^{2+} -ATPase activity during maximal accumulation increased more than 10-fold from 0.7 nmol/mg per s at 15°C to 9.7 nmol/mg per s at 30°C. As the coupling ratio between Ca^{2+} translocation and Ca^{2+} -ATPase ac-

tivity is considered to be independent of the temperature over this range [10,11], it follows that the temperature coefficient of Ca²⁺ efflux is identical to that of ATP-supported Ca²⁺ influx, in agreement with a coupling of the two processes.

The effect of other environmental parameters on Ca²⁺-accumulation was not studied in any systematic manner. However, we found that a decrease of pH to 6.1 resulted in unchanged maximal Ca²⁺-filling but decreased Ca²⁺-ATPase activity and initial Ca²⁺-uptake rate. Conversely, the maximal Ca²⁺-filling level decreased to around 80 nmol/mg when pH was elevated to 7.5 and in this case the Ca²⁺-ATPase activity and the initial Ca²⁺-uptake rate was increased.

Ca2+ efflux during maximal Ca2+ accumulation

The disappearance of ⁴⁵Ca²⁺ from the medium, when the isotope is added to the vesicular suspension at the point of maximal uptake (see points in Fig. 1), is shown in Fig. 2A. At the two higher ATP concentrations, ⁴⁵Ca²⁺ partitions rapidly between the medium and vesicles in the same proportion as ⁴⁰Ca²⁺. This ideal behaviour is not fully followed at the two lower ATP concentrations, presumably because the time required for equilibration is too long to maintain intravesicular Ca2+ in a steady state (notice the presence of the 'overshoot' phenomenon, which presumably indicates time-dependent changes in the Ca2+ permeability of the vesicles [6]). Accordingly, only the data at the two higher ATP concentrations were subjected to compartmental analysis (Materials and Methods), while Ca2+ influx was estimated from initial rates in the two other experiments.

The results obtained are compiled in Table I, together with determinations of both steady-state Ca²⁺-ATPase activity and initial Ca²⁺-uptake rate. It is seen that Ca²⁺ influx during steady state is lower than the initial Ca²⁺ uptake rate, especially at the higher ATP concentrations. This decrease is attributable to the inhibition of Ca²⁺-ATPase activity by a high intravesicular concentration of Ca²⁺ [1-3,12]. The apparent coupling ratio in steady state, calculated as the ratio between Ca²⁺ influx and ATPase activity, varies from 1.08 to 1.58 without any systematic variation on the ATP concentration. These values are lower than the generally accepted coupling ratio of 2 for the

ATPase [2,13–16] (but see Ref. 17). It is also lower than the coupling ratio that we have measured during the initial part of the reaction (see Fig. 3) or during reversal of the Ca²⁺ pump [6]. According to the data of Fig. 3, the coupling ratio is 2 up to an intravesicular Ca²⁺ level of 30–35 nmol/mg protein. At higher intravesicular levels there is a relative decrease in net Ca²⁺ uptake, presumably heralding the onset of the Ca²⁺-efflux phenomenon.

In the experiments of Fig. 2, unidirectional fluxes are measured under conditions approaching steady state, and therefore the coupling ratio might have been expected to be the same as measured in the initial uptake period in Fig. 3. However, as noted by Hasselbach [14], the presence of unsealed vesicles or non-vesicular membrane fragments may be the main cause of apparently low coupling

ratios at high Ca²⁺ loads. In contrast to the sealed vesicles, this fraction of the ATPase population is not subject to inhibition by a high intravesicular Ca²⁺ concentation. Even if the 'leaky' vesicles constitute a very small fraction of a preparation, it may contribute considerably to the measured Ca²⁺-ATPase activity during a maximal Ca²⁺ load and thereby cause an apparent lowering of the measured coupling ratio. For example: 17–34% of the Ca²⁺-ATPase activity under these conditions will be due to leaky vesicles in a preparation containing 2–5% of these, if the Ca²⁺-ATPase activity of closed vesicles is 10% of that of the leaky vesicles.

 Ca^{2+} efflux at submaximal Ca^{2+} accumulation

At any given time during the approach of Ca²⁺ accumulation to a maximal load level, efflux of

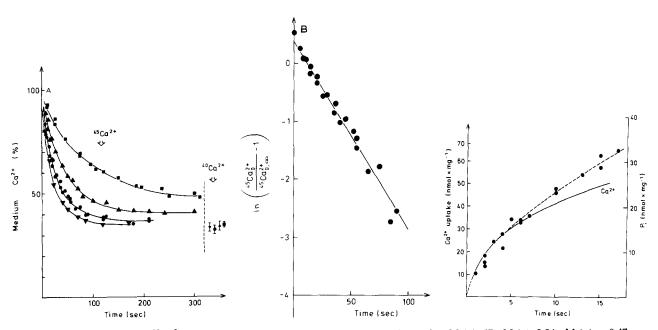


Fig. 2. A. Disappearance of 45 Ca $^{2+}$ from the medium at different ATP concentrations: 187 μ M (\blacktriangledown), 47 μ M (\bullet), 0.94 μ M (\bullet) or 0.47 μ M (\bullet) ATP. The radioactive isotope was added at a time corresponding to maximal filling of the vesicles with 40 Ca $^{2+}$ (cf. Fig. 1). This corresponds to a distribution of 40 Ca $^{2+}$ with 33–35% remaining in the medium (for all ATP concentrations). Assay conditions as in Fig. 1. Part B demonstrates how closely experimental data actually fit the graphical analysis based on a simple two-compartment model (see Methods, data from experiments with 47 μ M ATP only).

Fig. 3. Initial net Ca^{2+} uptake (unbroken curve, left-hand ordinate) and inorganic phosphate liberation (broken curve with symbols, right-hand ordinate) in sarcoplasmic reticulum vesicles. P_i liberation was measured using $[\gamma^{-32}P]ATP$ as described in Materials and Methods. Correction was made for P_i liberation in the presence of 10 mM EGTA (basal-ATPase). The steady-state Ca^{2+} -ATPase activity of the preparation was 0.79 nmol/mg per s. Assay conditions: 15°C; 0.44 mg/ml protein; 575 μ M ATP (no regenerating system); 100 μ M $CaCl_2$ added; 17 μ M arsenazo III in both types of experiment. Note that ADP accumulation, due to the absence of an ATP-regenerating system, cannot be ascribed any significance as only about 3.5% of the ATP is hydrolyzed during the experimental observation period (total ATPase activity).

 Ca^{2+} (dCa_e/dt) equals the difference between active Ca^{2+} influx (dCa_i/dt) and net Ca^{2+} uptake (dCa_u/dt) by the vesicles, i.e.

$$\frac{dCa_e}{dt} = \frac{dCa_i}{dt} - \frac{dCa_u}{dt} = \frac{dP_i}{dt}CR - \frac{dCa_u}{dt}$$
 (2)

where dP_i/dt is the rate of Ca^{2+} dependent ATP hydrolysis and CR is the apparent coupling ratio between Ca^{2+} influx and ATP hydrolysis. The results of calculations based on the data of Fig. 1 and steady-state ATPase activity (Table I) are shown in Fig. 4. It is seen that Ca^{2+} efflux rises steeply at a level of 80 nmol Ca^{2+}/mg . At the lowest ATP concentration $(0.47 \, \mu\text{M}) \, Ca^{2+}$ efflux is barely distinguishable from Ca^{2+} outflow obtained by depleting the ATPase of medium substrate. An increase in ATP concentration increases Ca^{2+} efflux from this basal level at all intravesicular Ca^{2+} loads, resulting in highly cooperative efflux curves.

The shaded curve in Fig. 4 depicts the inhibition of Ca²⁺-ATPase activity. The construction of this curve is based on several measurements of rates of ATP hydrolysis and Ca²⁺ uptake during the initial reaction periods (see legend to Fig. 4). The figure shows that activity is reduced to a minimal level at 80 nmol Ca²⁺/mg protein. There is thus no correlation between inhibition of Ca2+-ATPase activity and activation of Ca2+ efflux by intravesicular Ca2+. In this connection it is appropriate to point out that calculations of Ca2+ efflux by Eqn. 2 assume the same Ca2+-ATPase activity as in the steady state (otherwise the apparent coupling ratio, taken from Table I, would be changed). For this reason, the course of Ca²⁺ efflux below 80 nmol/mg has been indicated by broken lines. It seems certain that Ca2+ efflux becomes negligible at low Ca2+ loads. This conclusion follows from the results of Fig. 3 which showed that up to a Ca²⁺ content of approx. 35 nmol/mg there was no evidence for Ca2+ exchange, as might perhaps have been expected at the high Mg²⁺ concentration (10 mM) on the basis of Ca2+ exchange results published by Takakuwa and Kanazawa [18].

Inhibition of Ca^{2+} -ATPase activity by accumulated Ca^{2+}

Independent verification of the inhibitory effect

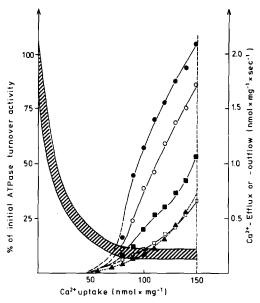


Fig. 4. Ca²⁺ efflux, Ca²⁺ outflow and Ca²⁺-ATPase inhibition as a function of the vesicular Ca2+ content. The Ca2+ efflux at different ATP concentrations is calculated from net Ca2+ uptake curves and the data of Table I as described in the text (•, 187 μM ATP; ○, 47 μM ATP; ■, 0.94 μM ATP; □, 0.47 μM ATP). The Ca²⁺ outflow experiments (A-----A) were performed under conditions identical to those of Fig. 1, except that the phosphoenol pyruvate concentration was lower (225 μM), so that spontaneous Ca²⁺ outflow occurred around 300 s after ATP addition (four experiments). Alternatively, and giving an identical outflow curve [6]. EGTA was added to a final concentration of 10 mM at 300 s after ATP (2 mM phosphoenol pyruvate; three experiments). The quantitative analysis of the inhibitory effect of intravesicular Ca2+ on the ATPase turnover activity (hatched curve, left-hand ordinate) is based on several different experimental results. The initial part of the curve was obtained both from fast spectrophotometric measurements of net Ca2+ uptake (below 35-40 nmol/mg) and of Ca²⁺-ATPase activity (up to a Ca²⁺ content of 60 nmol/mg, see Fig. 3). Above 80 nmol Ca²⁺/mg protein, Ca²⁺-ATPase activity is assumed to be constant as demonstrated by Fig. 5, and activities in this region are obtained from the data of Table I (47 and 187 μ M ATP). As an interesting point, it may be noted that we find it possible to assemble the hatched curve from experimental results obtained under different conditions, i.e., temperature and ATP concentrations in the range 47-575

of intravesicular Ca²⁺ on Ca²⁺-ATPase activity was gained from experiments with Ca²⁺ ionophore. By incorporation of varying amounts of X537A in the sarcoplasmic reticulum membrane, a leak of Ca²⁺ could be induced, causing a graded decrease in the steady-state Ca²⁺ content, accord-

TABLE I EFFECT OF VARIATION IN ATP CONCENTRATION ON Ca^{2+} -EXCHANGE AND Ca^{2+} -ATPase ACTIVITY IN MAXIMALLY Ca^{2+} -FILLED VESICLES AS WELL AS ON PARAMETERS OF NET Ca^{2+} UPTAKE

The Ca^{2+} exchange (= Ca^{2+} influx) was calculated from the data of Fig. 2A as described in Materials and Methods. The Ca^{2+} -ATPase activity is total ATPase activity measured minus Ca^{2+} -independent ('basal') ATPase activity, measured in the presence of 10 mM EGTA. The parameters of net Ca^{2+} uptake were read from spectrophotometric records, and the initial Ca^{2+} -uptake rate was estimated within the first second of the reaction. The figures are averages \pm S.D. (number of experiments in parentheses). In the case of exchange measurements, only one calculation was performed for each ATP concentration, experimental data being compiled from two or three experiments, however. Assay conditions as in Fig. 1.

[ATP] (μ M)	a 45 Ca ²⁺ influx (nmol/mg per s)	b Ca ²⁺ - ATPase activity (nmol/mg per s)	Ratio a/b	Maximal Ca ²⁺ - filling level (nmol/mg)	Half-time for max. Ca ²⁺ filling (s)	Initial net Ca ²⁺ uptake rate (nmol/mg per s)
0.47	0.66	0.49 ± 0.03 (3)	1.35	143.9 ± 1.9 (4)	105	1.0 ± 0.11 (7)
0.94	1.06	0.67 ± 0.11 (4)	1.58	$145.0 \pm 4.6 (10)$	49	1.4 ± 0.12 (6)
47	1.72	1.26 ± 0.16 (6)	1.37	$148.4 \pm 4.3 (18)$	13.0	$24.2 \pm 1.2 (11)$
187	2.09	1.93 ± 0.09 (4)	1.08	146.3 ± 4.3 (4)	9.5	28.4 ± 0.0 (3)

ing to the concentration of the ionophore. In this way, the effect of Ca²⁺ load on ATPase activity in the steady state could be estimated under otherwise identical conditions. Fig. 5 shows that the Ca²⁺ content of the vesicles can be reduced to about 80 nmol/mg without any increase in the Ca²⁺-ATPase activity. This is in perfect agreement with the notion that maximal inhibition is established at this level of Ca²⁺ load. Furthermore, the observed increase in activity that follows a decrease of Ca²⁺ uptake below this level also obeys the relationship depicted by the hatched curve in Fig. 4.

It is to be noted that the Ca²⁺ content of the vesicles indicated in Fig. 5 (as in all other figures) represents uptake from the medium with no correction for endogenous Ca²⁺ (approx. 25 nmol/mg [6]). Also, the 100% turnover activity in Fig. 4 is that exhibited by the enzyme in the presence of endogenous Ca²⁺, i.e., in the initial 0.5 s or so of

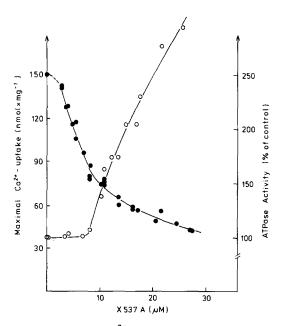
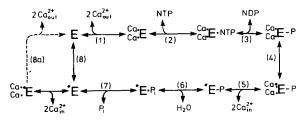


Fig. 5. Effect of the Ca²⁺ ionophore X537A (Lasalocid) on the maximal Ca²⁺-filling level (\bullet ; left-hand ordinate) and the steady-state Ca²⁺-ATPase activity (\bigcirc ; right-hand ordinate; percent of control without ionophore) of sarcoplasmic reticulum vesicles. Assay conditions: 20 or 25°C; 0.45 mg/ml protein (two different preparations): 110 μ M CaCl₂ added; 550 μ M ATP; 17 μ M arsenazo III. Vesicles were preincubated 5 min with ionophore in the reaction medium before Ca²⁺ uptake was initiated by ATP addition.

the reaction. However, we have experimental results indicating that even endogenous Ca^{2+} inhibits the transport enzyme appreciably. During preincubation of the vesicles with ionophore (8–14 μ M ionophore X537A), we recorded spectrophotometrically a loss of 50–75% of the endogenous Ca^{2+} associated with the vesicles in a suspension. The initial net Ca^{2+} uptake rate was found to be increased by a factor 1.3–1.4 after this treatment with ionophore.

Discussion


Coupling between Ca2+ influx and Ca2+ efflux

The present data show that under conditions of a high Ca²⁺ load and ATPase activity, Ca²⁺ leaves sarcoplasmic reticulum vesicles by a process which is much faster than the Ca2+ outflow that is observed after stopping Ca2+ pumping activity [6]. In contrast to Ca²⁺ outflow, which represents the passive permeability of the vesicles, Ca²⁺ efflux under these conditions presumably is a carriermediated process. This can be inferred from the dependence of efflux on the turnover of the enzyme. At the same level of maximal, intravesicular Ca²⁺ load, efflux closely matches influx of Ca²⁺ despite wide variations in ATPase activity, induced by changes in ATP concentration and temperature. Thus Ca2+ efflux appears to be closely coupled to ATP-consuming Ca2+ influx. This proposal was originally presented by Weber et al. [1], and it has subsequently been supported by various experimental observations [3,5,18-23]. In the further discussion of this phenomenon, it is important to note that Ca²⁺ efflux under our experimental conditions cannot be attributed to reversal of the Ca2+ inward translocation process (with ATP synthesis, step 4 of Scheme I, which presents a slightly modified version of schemes for the Ca²⁺-ATPase reaction sequence previously considered [11,16,24]). This can be inferred from the following facts. (i) The Ca²⁺ concentation in the medium was relatively high (30-100 μM), a circumstance which strongly inhibits reversal, as evidenced by no detectable NTP \rightleftharpoons P_i exchange [25,26]. (ii) ADP was virtually absent due to continuous ATP regeneration. (iii) Ca2+ exchange was observed also with carbamyl phosphate as an energy-donor, in which case reversal does not occur.

Feher and Briggs [5], on the basis of data similar to ours, suggest that Ca²⁺ exchange takes place by a dynamic reversal of step 4, not involving resynthesis of ATP. A similar view has been advanced by Takakuwa and Kanazawa [18] in studies on Ca2+ exchange at low temperature and in the simultaneous presence of ATP and ADP. However, our data on the low ⁴⁵Ca²⁺-influx/ATPase ratio (Table I) preclude extensive exchange of Ca²⁺ in step 4. It is conceivable that shuttling of Ca²⁺ in step 4 can take place, but if so this process must occur without exchange of the bound 45Ca2+ with unlabelled Ca2+ within the aqueous vesicle compartment. Otherwise we would have observed an increase in the 45Ca²⁺/ATP consumption (apparent coupling) ratio, whereas the values obtained under conditions of a high intravesicular Ca²⁺ load actually were low (Table I).

An additional argument against locating Ca²⁺ exchange at step 4 is the lack of correlation between inhibition of the enzyme by intravesicular Ca²⁺ and activation of Ca²⁺ efflux. The inhibitory effect of high intravesicular Ca²⁺ has been attributed to saturation of the Ca²⁺ transport sites in their low-affinity state [11,27,28] and an associated inhibition of step 4 [29] and/or inhibition of step 5 in the reaction sequence [15,30,31]. But in our experiments, significant activation of Ca²⁺ efflux required calcium loads which exceeded the level required to obtain maximal inhibition of enzyme turnover by Ca²⁺ (Fig. 4).

It therefore seems more attractive to assume that Ca²⁺ efflux is associated with the return of the Ca²⁺ translocation sites to their exterior position, after dephosphorylation of the enzyme (shown as step 8a in Scheme I). Certain aspects of this

Scheme I. Partial reactions of Ca²⁺-ATPase; slightly modified from De Meis [11]. For further explanation, see text.

proposal call for comments. It has been suggested that the relatively low rate at which Ca²⁺ binds to sarcoplasmic reticulum, after preincubation with EGTA-containing media [11,32], represents reaction 8 in Scheme I [11,33]. This would mean that in the presence of a high intravesicular Ca2+ concentration alone, step 8a would be expected to occur. However, in the preceding paper we obtained no evidence for a carrier-mediated outflow of Ca²⁺ after addition of EGTA [6]. This could mean that efflux of Ca2+ instead is associated with reactions 6 or 7 in Scheme I or that the *E conformation formed after phosphorylation with ATP has somewhat different properties than the conformation formed by gradient-independent phosphorylation with P_i. In agreement with the latter possibility, fluorescence studies suggest that the conversion of E to *E by addition of EGTA is incomplete [34-36]. In particular, Guillain et al. [35,36] have obtained evidence that in the presence of a high Mg²⁺ concentration and pH 7, conditions similar to those used in the present study, one of the Ca²⁺-binding sites is probably occupied by Mg²⁺ with an outward-facing site.

Previous studies indicate that Ca²⁺ may exchange with intravesicular H⁺ [37-41] and K⁺ [42-47]. It has been suggested that Ca²⁺ influx occurs by a nonelectrogenic process, i.e., an ATPase mediated counter-movement of H⁺ or K⁺ [44,48]. If this is the case, efflux of Ca²⁺ mediated by the active pump will occur by competition with K⁺ and/or H⁺. This could account for the absence of Ca²⁺-efflux at low Ca²⁺-filling levels (35-40 nmol/mg protein) of the sarcoplasmic reticulum vesicles, where extrusion of monovalent ions may predominate.

Relation between Ca²⁺ efflux and Ca²⁺ outflow

The data presented here are important in relation to the Ca²⁺ outflow process occurring after cessation of active Ca²⁺ transport, as described in the preceding paper [6]. A stoichiometric relation between Ca²⁺ influx and efflux will only result in a fixed, limiting value for maximal Ca²⁺ uptake, if passive permeation is negligible. However, as shown by Fig. 4, Ca²⁺ outflow is not under all conditions negligible compared to ATP-dependent efflux. This is particularly noticeable at the lowest ATP concentration, where Ca²⁺ efflux is barely

distuinguishable from Ca²⁺ outflow, despite that the ATPase activity is 25-73% of that measured at the higher ATP concentrations (cf. Table I). Thus, Ca²⁺ transport dependent efflux and passive permeation of Ca²⁺ seem to be interdependent phenomena, passive Ca²⁺ permeation being reduced when the transport enzyme is active. A simple explanation for this behaviour is the existence of a common membrane channel, responsible for both Ca²⁺ translocation correlated to enzyme turnover and Ca2+ outflow when the enzyme is inactive. There is evidence that Ca²⁺, at least transiently, is in an occluded state during active transport [33,49,50]. This could mean that the channel is occupied (occluded) under these conditions, and so would result in concomitant blockage of passive Ca²⁺ permeation.

Physiological implications

In the present and companion paper [6] we have dealt with Ca²⁺ efflux (activated by ATP), Ca²⁺ outflow (in the non-energized state of the Ca2+ pump), and briefly with time-dependent release of a minor amount of accumulated Ca2+ in vesicles ('overshoot'). As noted by Endo [51], sarcoplasmic reticulum is probably only loaded to one-fourth or one-third of its maximum capacity in vivo. A recent electron-probe study has shown that the Ca²⁺ content of the longitudinal sarcoplasmic reticulum in muscle cells is lower than that of the terminal cisternae [52]. The use in the present experiments of a preparation which is derived primarily from the longitudinal sarcoplasmic reticulum may thus indicate that the physiological Ca²⁺ loading level is even lower than proposed by Endo [51], i.e., lower than 40 nmol/mg protein. Under our conditions no Ca2+ efflux was detectable at a Ca²⁺ filling level below 35-40 nmol/mg. the Ca²⁺ outflow was very low [6], and 'overshoot' was not demonstrable. Therefore, it is improbable that any of these phenomena is of significance for Ca²⁺ release in vivo. In agreement with this conclusion, theoretical calculations suggest that Ca2+ accumulation by muscle cells in the resting state is close to thermodynamic equilibrium [14,53]. Hence, it appears likely that under these conditions, reversal of the Ca²⁺ transport process (with resynthesis of ATP) plays an important role for the balance between Ca2+ influx and efflux. In combination

with the low ATPase activity, resulting from the low concentration of myoplasmic Ca²⁺, this would effectively prevent futile, energy-requiring cycling of Ca²⁺ across the sarcoplasmic reticulum membrane during the resting state of the muscle cell.

References

- 1 Weber, A., Herz, R. and Reiss, I. (1966) Biochem. Z. 345, 329-369
- 2 Weber, A. (1966) in Current Topics in Bioenergetics (Sanadi, D.R., ed.), Vol. 1, p. 203, Academic Press, New York
- 3 Waas, W. and Hasselbach, W. (1981) Eur. J. Biochem. 116, 601-608
- 4 Feher, J.J. and Briggs, F.N. (1982) J. Biol. Chem. 257, 10191-10199
- 5 Feher, J.J. and Briggs, F.N. (1983) Biochim. Biophys. Acta 727, 389-402
- 6 Gerdes, U., Nakhla, A.M. and Møller, J.V. (1983) Biochim. Biophys. Acta 734, 180-190
- 7 Francis, G.E., Mulligan, W. and Wormall, H. (1959) Isotopic Tracers, 2nd Edn. University of London, The Athlone Press
- 8 Verjovski-Almeida, S., Kurzmack, M. and Inesi, G. (1978) Biochemistry 17, 5006-5013
- 9 Lindberg, O. and Ernster, L. (1956) in Methods of Biochemical Analysis (Glick, D., ed.), Voll. 3, pp. 1-22, Wiley Interscience New York
- 10 Vale, M.G.P. and Carvalho, A.P. (1980) Biochem. J. 186, 461-467
- 11 De Meis, L. (1981) in Transport in the Life Sciences, Vol. 2 (Bittar, E.E., ed.), J. Wiley & Sons, New York
- 12 Makinose, M. and Hasselbach, W. (1965) Biochem. Z. 343, 360-382
- 13 Hasselbach, W. (1964) Prog. Biophys. Mol. Biol. 14, 167-222
- 14 Hasselbach, W. (1981) in Membrane Transport (Bonting, S.L. and De Pont, J.J.H.H.M., eds.), Ch. 7, pp. 183-208, Elsevier/North-Holland Biomedical Press, Amsterdam
- 15 Tada, M., Yamamoto, T. and Tonomura, Y. (1978) Physiol. Rev. 58 (1), 2-66
- 16 De Meis, L. and Vianna, A.L. (1979) Annu. Rev. Biochem. 48, 275-292
- 17 Rossi, B., De Assis Leone, F., Gache, C. and Lazdunski, M. (1979) J. Biol. Chem. 254 (7), 2302-2307
- 18 Takakuwa, Y. and Kanazawa, T. (1982) J. Biol. Chem. 257, 10770-10775
- 19 Balzer, H., Makinose, M. and Hasselbach, W. (1968) Naunyn-Schmiedebergs Arch. Pharmak, U. Exp. Path. 260, 444-455
- 20 Katz, A.M., Dunnet, J., Repke, D.I. and Hasselbach, W. (1976) FEBS Lett. 67 (2), 207-208
- 21 Katz, A.M., Repke, D.I., Dunnet, J. and Hasselbach, W. (1977) J. Biol. Chem. 252 (6), 1950-1956
- 22 Katz, A.M., Repke, D.I., Fudyma, G. and Shigekawa, M. (1977) J. Biol. Chem. 252 (12) 4210-4214
- 23 Kirchberger, M.A. and Wong, D. (1978) J. Biol. Chem. 253, 6941-6945

- 24 Carvalho, M.G.C., De Souza, D.G. and De Meis, L. (1976)
 J. Biol. Chem. 251, 3629–3636
- 25 Makinose, M. (1973) FEBS Lett. 37, 140-143
- 26 De Meis, L. and Carvalho, M.G.C. (1974) Biochemistry 13, 5032-5037
- 27 Ikemoto, N. (1975) J. Biol. Chem. 250 (18), 7219-7224
- 28 Ikemoto, N. (1976) J. Biol. Chem. 251 (22), 7275-7277
- 29 Shigekawa, M. and Dougherty, J.P. (1978) J. Biol. Chem. 253, 1458-1464
- 30 Yamamoto, T., Takisawa, H. and Tonomura, Y. (1979) Curr. Top. Bioenerg. 9, 179-236
- 31 Yamada, S. and Tonomura, Y. (1972) J. Biochem. (Tokyo) 72, 417-425
- 32 Rauch, G., Chak, D. and Hasselbach, W. (1978) FEBS Lett. 93, 65-68
- 33 Dupont, Y. (1978) Biochem. Biophys. Res. Commun. 82, 893-900
- 34 Pick, U. and Karlish, S.J.D. (1982) J. Biol. Chem. 257, 6120-6126
- 35 Guillain, F., Gingold, M.P. and Champeil, P. (1982) J. Biol. Chem. 257, 7366–7371
- 36 Champeil, P., Gingold, M.P., Guillain, F. and Inesi, G. (1983) J. Biol. Chem. 258, 4453-4458
- 37 Madeira, V.M.C. (1980) Arch. Biochem. Biophys. 200 (2), 319-325

- 38 Meissner, G. and Young, R.C. (1980) J. Biol. Chem. 255, 6814–6819
- 39 Chiesi, M. and Inesi, G. (1980) Biochemistry 19, 2912-2918
- 40 Ueno, T. and Sekine, T. (1981) J. Biochem. (Tokyo) 89, 1239-1246
- 41 Ueno, T. and Sekine, T. (1981) J. Biochem. (Tokyo) 89, 1247-1252
- 42 Chiu, V.C.K. and Haynes, D.H. (1980) J. Membrane Biol. 56, 203-218
- 43 Chiu, V.C.K. and Haynes, D.H. (1980) J. Membrane Biol. 56, 219-239
- 44 Haynes, D.H. (1982) Arch. Biochem. Biophys. 215, 444-461
- 45 Meissner, G. (1981) J. Biol. Chem. 256, 636-643
- 46 Kometani, T. and Kasai, M. (1980) J. Membrane Biol. 56, 159-168
- 47 Koshita, M. and Hotta, K. (1981) Jap. J. Physiol. 31, 109-120
- 48 Bennett, N. and Dupont, Y. (1981) FEBS Lett. 128, 269-274
- 49 Takisawa, H. and Makinose, M. (1981) Nature 290, 271-273
- 50 Nakamura, Y. and Tonomura, Y. (1981) J. Biochem. (Tokyo) 91, 449–461
- 51 Endo, M. (1977) Physiol. Rev. 57 (1), 71-103
- 52 Somlyo, A.V., Gonzalez-Serratos, H., Shuman, H., McClellan, G. and Somlyo, A.P. (1981) J. Cell. Biol. 90, 577-594
- 53 Tanford, C. (1981) J. Gen. Physiol. 77, 223-229